
JOURNAL OF COMPUTATIONAL PHYSICS Ill& 43fS432 (1992) 

NOTE 

Effect of Spatial Resolution on Apparent Sensitivity to Initial 
Conditions of a Decaying Flow as It Becomes Turbulent 

In [l] we obtained numerical solutions for decaying 
Navier-Stokes flows. Although the higher Reynolds-num- 
ber solutions indicated sensitive dependence on initial con- 
ditions (chaoticity), there may be some question about the 
effect of spatial resolution on the numerical results. For 
example, the effect of spatial resolution on sustained Benard 
convection was studied in [2], where it was found that 
spurious chaos can arise in underresolved flows. The com- 
plexity of a flow in some cases decreased with improved 
resolution, although sensitivity to small initial-condition 
changes appears not to have been determined. 

Here, in order to check for spurious chaos and to obtain 
better solutions for our problem in [ 11, we explore the effect 
of improved numerical resolution and numerical method on 
the chaoticity of solutions for decaying Navier-Stokes 
flows-that is, for flows described by the Navier-Stokes 
equations without energy input. The NavierrStokes equa- 
tions for an incompressible flow can be written as 

where 

The su 

au. ~(whc) L=-- 1 %J a*ui 
at ah ---+Vax,ax,' P axi (1) 

he pressure is given by the Poisson equation 

i azp a*(u,h) --=-~ 
P ax, ax, ax, axk (2) 

scripts can have the values 1, 2, or 3, and a repeated 
subscript in a term indicates a summation, with the sub- 
script successively taking on the values 1, 2, and 3. The 
quantity ui is an instantaneous velocity component, x, is a 
space coordinate, t is the time, p is the density, v is the 
kinematic viscosity, and p is the instantaneous pressure. As 
in [ 1 ] the initial velocity is given by 

ui=aic0sq~x+6,c0sr.x+cic0ss.x, (3) 

where 

ui = k(2, 1, l), 6,=k(l, 2, l), 

ci=k(l, 1, 2), qi’Cel, l, l)lxOY (4) 

yi=(l, -l, l)lxO, si=(l, l, -1)/xO, 

k is a quantity that fixes the initial Reynolds number at 
t = 0, and x0 is one over the magnitude of an initial 
wavenumber component. The initial pressure is not 
specified, since it is calculated from Eq. (2). Equations (3) 
and (4) satisfy continuity, and Eqs. (1) and (2) ensure that 
continuity is maintained. The boundary conditions are 
periodic, with a period of 271x0. 

Cubical computational grids are used for the numerical 
calculations. For the 323 and 643 grid-point cases fourth- 
order spatial differencing and third-order Adams-Moulton 
predictor-corrector time differencing are used (see [ 1 ] for 
more detail). For 1283 grid points a pseudospectral method 
is used for calculating the spatial derivatives [3]. The 
products of velocity components in the nonlinear terms are 
obtained before taking Fourier transforms. An isotropic 
wavenumber truncation of the higher modes is used to 
eliminate aliasing instabilities [3, Eq. (7.2.19)]. Since a 
pseudospectral method is of high (approaching infinite) 
order, the 1283 grid-point case should give even better 
resolution than if it had used the fourth-order method. A 
second-order AdamssBashforth method is used for the time 
differencing in the pseudospectral code. As in [ 11, numeri- 
cal stability limitations force the timewise resolution (about 
20 time steps in the shortest velocity fluctuations) to be 
good. The emphasis here is therefore on the effect of spatial 
resolution. 

In [4] we showed, by calculating the largest Liapunov 
exponents, that long-term asymptotic solutions for steadily 
forced Navier-Stokes turbulence have sensitive dependence 
on initial conditions. For decaying flows, long-term 
asymptotic solutions are, of course, stable fixed points in 
phase space, so that the Liapunov exponents as usually 
defined, are negative. Thus there is no dependence on initial 
conditions after a long time. We can, however, consider 
sensitivity to initial conditions at earlier times. Since it is 
not clear how Liapunov exponents might be meaningfully 
defined for decaying flows, we investigate the chaoticity of 
the latter, as in [ 11, by simply perturbing the initial condi- 
tions a small amount and comparing the perturbed solutions 
with the unperturbed ones. Here we perturb the ai, bi, and 
ci in Eq. (4) by 0.1 %, while maintaining continuity. For 
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example, the ai are perturbed from k(2, 1, 1) to k(2.002, 
1.001, 1 .OOl). The constant k is taken to be 640. 

Figure 1 shows the effect of spatial resolution on the 
indicated sensitivity of the flow to small changes in initial 
conditions. We take, as a measure of that sensitivity, the 
value of t* at which a perturbed solution first shows a 
definite break with the corresponding unperturbed one. 
It is clear that improved resolution increases the sensitivity 
of the solution to small initial-condition changes; the 
perturbed solution breaks away from the unperturbed one 
sooner for the more highly resolved cases. Similar results 
were obtained for other velocity components and at other 
grid points. These are comforting observations since, if the 
results were otherwise, the observed chaos in our solutions 
might be due to inadequate numerical resolution. 

Because the time steps in Fig. 1 are generally determined 

b 2.0 by stability considerations, those steps are smaller for cases 
where the spatial grid-point spacing is smaller. However, 

1.5 L results obtained by using the same time step for all three 
1.0 grid sizes are similar to those shown. In all cases very good 

.5 
time resolution is indicated, since there are at least 20 time 
steps in the shortest fluctuations. 

The results in Fig. 2 indicate that the case with 128’ grid 
points is rather well-resolved spatially for t* = 0.005. This is 

INITIAL CONDITIONS particularly so because of the high-order accuracy of the 
USE EQ. (4) pseudospectral method used. (The grid points are shown by 
PERTURBED 0.1% symbols.) The resolution at earlier times (not shown) is also 

” 
1 ; --- INCIPIENT BREAKAWAY good because, although the Reynolds number is higher at 

earlier times, the smaller-scale fluctuations (which are 
absent in the initial conditions) had not yet developed. The 

0 .002 .004 .006 ,008 .OlO resolution for t* = 0.005 occurs in spite of some steep 
t* = W/x2)1 0 

gradients in the flow. The tendency to form steep gradients 
at some points in the flow is, of course, a well-known 
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FIG. 1. Calculated evolution of velocity fluctuations at grid center 

(normalized by initial conditions) for initial Reynolds number wo 

#,“’ x0/v = 1108 (k in Eq. (4) = 640). Root-mean-square fluctuations are FIG. 2. Calculated spatial variation of velocity fluctuations on a plane 
spatially averaged. (a) 323 grid points. (b) 643 grid points. (c) 1283 grid through grid center. Symbols are at grid points. Number of grid points, 
points. 
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property of turbulent flows and evidently occurs as a 
steepening effect of the nonlinear terms in the Navier- 
Stokes equations. 

To summarize, grids with 323, 643, and 1283 points are 
used in numerical solutions for a decaying flow. The results 
indicate that the sensitivity of initially neighboring solutions 
to small changes in initial conditions increases as the spatial 
resolution improves. A fourth-order finite-difference 
method is used for the solutions with 323 and 643 grid 
points, and a pseudospectral method is used for 1283 grid 
points. The latter solutions appear to be rather well- 
resolved, in spite of the formation of some steep velocity 
gradients in the flow. 
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